MMC
概述
功能简介
MMC(MultiMedia Card)即多媒体卡,是一种用于固态非易失性存储的小体积大容量的快闪存储卡。
MMC后续泛指一个接口协定(一种卡式),能符合这种接口的内存器都可称作MMC储存体。主要包括几个部分:MMC控制器、MMC总线、存储卡(包括MMC卡、SD卡、SDIO卡、TF卡)。
MMC、SD、SDIO总线,其总线规范类似,都是从MMC总线规范演化而来的。MMC强调的是多媒体存储;SD强调的是安全和数据保护;SDIO是从SD演化出来的,强调的是接口,不再关注另一端的具体形态(可以是WIFI设备、Bluetooth设备、GPS等等)。
基本概念
-
SD卡(Secure Digital Memory Card)
SD卡即安全数码卡。它是在MMC的基础上发展而来,SD卡强调数据的安全安全,可以设定存储内容的使用权限,防止数据被他人复制。在数据传输和物理规范上,SD卡(24mm*32mm*2.1mm,比MMC卡更厚一点),向前兼容了MMC卡。所有支持SD卡的设备也支持MMC卡。
-
SDIO(Secure Digital Input and Output)
即安全数字输入输出接口。SDIO是在SD规范的标准上定义的一种外设接口,它相较于SD规范增加了低速标准,可以用最小的硬件开销支持低速I/O。SDIO接口兼容以前的SD内存卡,也可以连接SDIO接口的设备。
运作机制
在HDF框架中,MMC的接口适配模式采用独立服务模式(如图1所示)。在这种模式下,每一个设备对象会独立发布一个设备服务来处理外部访问,设备管理器收到API的访问请求之后,通过提取该请求的参数,达到调用实际设备对象的相应内部方法的目的。独立服务模式可以直接借助HDFDeviceManager的服务管理能力,但需要为每个设备单独配置设备节点,增加内存占用。
独立服务模式下,核心层不会统一发布一个服务供上层使用,因此这种模式下驱动要为每个控制器发布一个服务,具体表现为:
-
驱动适配者需要实现HdfDriverEntry的Bind钩子函数以绑定服务。
-
device_info.hcs文件中deviceNode的policy字段为1或2,不能为0。
MMC模块各分层作用:
-
接口层提供打开MMC设备、检查MMC控制器是否存在设备、关闭MMC设备的接口。
-
核心层主要提供MMC控制器、移除和管理的能力,还有公共控制器业务。通过钩子函数与适配层交互。
-
适配层主要是将钩子函数的功能实例化,实现具体的功能。
图 1 MMC独立服务模式结构图
开发指导
场景介绍
MMC用于多媒体文件的存储,当驱动开发者需要将MMC设备适配到OpenHarmony时,需要进行MMC驱动适配。下文将介绍如何进行MMC驱动适配。
接口说明
为了保证上层在调用MMC接口时能够正确的操作MMC控制器,核心层在//drivers/hdf_core/framework/model/storage/include/mmc/mmc_corex.h中定义了以下钩子函数,驱动适配者需要在适配层实现这些函数的具体功能,并与钩子函数挂接,从而完成适配层与核心层的交互。
MmcCntlrOps定义:
struct MmcCntlrOps {
int32_t (*request)(struct MmcCntlr *cntlr, struct MmcCmd *cmd);
int32_t (*setClock)(struct MmcCntlr *cntlr, uint32_t clock);
int32_t (*setPowerMode)(struct MmcCntlr *cntlr, enum MmcPowerMode mode);
int32_t (*setBusWidth)(struct MmcCntlr *cntlr, enum MmcBusWidth width);
int32_t (*setBusTiming)(struct MmcCntlr *cntlr, enum MmcBusTiming timing);
int32_t (*setSdioIrq)(struct MmcCntlr *cntlr, bool enable);
int32_t (*hardwareReset)(struct MmcCntlr *cntlr);
int32_t (*systemInit)(struct MmcCntlr *cntlr);
int32_t (*setEnhanceStrobe)(struct MmcCntlr *cntlr, bool enable);
int32_t (*switchVoltage)(struct MmcCntlr *cntlr, enum MmcVolt volt);
bool (*devReadOnly)(struct MmcCntlr *cntlr);
bool (*devPlugged)(struct MmcCntlr *cntlr);
bool (*devBusy)(struct MmcCntlr *cntlr);
int32_t (*tune)(struct MmcCntlr *cntlr, uint32_t cmdCode);
int32_t (*rescanSdioDev)(struct MmcCntlr *cntlr);
};
表 1 MmcCntlrOps结构体成员的钩子函数功能说明
成员函数 | 入参 | 返回值 | 功能 |
---|---|---|---|
doRequest | cntlr:结构体指针,核心层MMC控制器 cmd:结构体指针,传入命令值 |
HDF_STATUS相关状态 | request相应处理 |
setClock | cntlr:结构体指针,核心层MMC控制器 clock:uint32_t类型,时钟传入值 |
HDF_STATUS相关状态 | 设置时钟频率 |
setPowerMode | cntlr:结构体指针,核心层MMC控制器 mode:枚举值(见MmcPowerMode定义),功耗模式 |
HDF_STATUS相关状态 | 设置功耗模式 |
setBusWidth | cntlr:核心层结构体指针,核心层MMMC控制器 width:枚举类型(见MmcBusWidth定义),总线带宽 |
HDF_STATUS相关状态 | 设置总线带宽 |
setBusTiming | cntlr:结构体指针,核心层MMC控制器 timing:枚举类型(见MmcBusTiming定义),总线时序 |
HDF_STATUS相关状态 | 设置总线时序 |
setSdioIrq | cntlr:结构体指针,核心层MMC控制器 enable:布尔值,控制中断 |
HDF_STATUS相关状态 | 使能/去使能SDIO中断 |
hardwareReset | cntlr:结构体指针,核心层MMC控制器 | HDF_STATUS相关状态 | 复位硬件 |
systemInit | cntlr:结构体指针,核心层MMC控制器 | HDF_STATUS相关状态 | 系统初始化 |
setEnhanceStrobe | cntlr:结构体指针,核心层MMC控制器 enable:布尔值,设置功能 |
HDF_STATUS相关状态 | 设置增强选通 |
switchVoltage | cntlr:结构体指针,核心层MMC控制器 volt:枚举值,电压值(3.3,1.8,1.2V) |
HDF_STATUS相关状态 | 设置电压值 |
devReadOnly | cntlr:结构体指针,核心层MMC控制器 | 布尔值 | 检验设备是否只读 |
cardPlugged | cntlr:结构体指针,核心层MMC控制器 | 布尔值 | 检验设备是否拔出 |
devBusy | cntlr:结构体指针,核心层MMC控制器 | 布尔值 | 检验设备是否忙碌 |
tune | cntlr:结构体指针,核心层MMC控制器 cmdCode:uint32_t类型,命令代码 |
HDF_STATUS相关状态 | 调谐 |
rescanSdioDev | cntlr:结构体指针,核心层MMC控制器 | HDF_STATUS相关状态 | 扫描并添加SDIO设备 |
开发步骤
MMC模块适配包含以下四个步骤:
-
实例化驱动入口
-
配置属性文件
-
实例化MMC控制器对象
-
驱动调试
开发实例
下方将基于Hi3516DV300开发板以//device/soc/hisilicon/common/platform/mmc/himci_v200/himci.c驱动为示例,展示需要驱动适配者提供哪些内容来完整实现设备功能。
-
实例化驱动入口
驱动入口必须为HdfDriverEntry(在hdf_device_desc.h中定义)类型的全局变量,且moduleName要和device_info.hcs中保持一致。HDF框架会将所有加载的驱动的HdfDriverEntry对象首地址汇总,形成一个类似数组的段地址空间,方便上层调用。
一般在加载驱动时HDF会先调用Bind函数,再调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。
MMC驱动入口开发参考:
struct HdfDriverEntry g_mmcDriverEntry = { .moduleVersion = 1, .Bind = HimciMmcBind, // 见Bind参考 .Init = HimciMmcInit, // 见Init参考 .Release = HimciMmcRelease, // 见Release参考 .moduleName = "hi3516_mmc_driver", // 【必要且与HCS文件中里面的moduleName匹配】 }; HDF_INIT(g_mmcDriverEntry); // 调用HDF_INIT将驱动入口注册到HDF框架中
-
配置属性文件
完成驱动入口注册之后,需要在device_info.hcs文件中添加deviceNode信息,deviceNode信息与驱动入口注册相关。本例以三个MMC控制器为例,如有多个器件信息,则需要在device_info.hcs文件增加对应的deviceNode信息,以及在mmc_config.hcs文件中增加对应的器件属性。器件属性值与核心层MmcCntlr成员的默认值或限制范围有密切关系,需要在mmc_config.hcs中配置器件属性。
独立服务模式的特点是device_info.hcs文件中设备节点代表着一个设备对象,如果存在多个设备对象,则按需添加,注意服务名与驱动私有数据匹配的关键字名称必须唯一。其中各项参数如表2所示:
表 2 device_info.hcs节点参数说明
成员名 | 值 |
---|---|
policy | 驱动服务发布的策略,MMC控制器具体配置为2,表示驱动对内核态和用户态都发布服务 |
priority | 驱动启动优先级(0-200),值越大优先级越低。MMC控制器控制器具体配置为10 |
permission | 驱动创建设备节点权限,MMC控制器控制器具体配置为0664 |
moduleName | 驱动名称,MMC控制器控制器固定为hi3516_mmc_driver |
serviceName | 驱动对外发布服务的名称,MMC控制器控制器服务名设置为HDF_PLATFORM_MMC_X,X代表MMC控制器号 |
deviceMatchAttr | 驱动私有数据匹配的关键字,MMC控制器控制器设置为hi3516_mmc_X,X代表控制器类型名 |
- device_info.hcs 配置参考:
在//vendor/hisilicon/hispark_taurus/hdf_config/device_info/device_info.hcs文件中添加deviceNode描述。
```c
root {
device_info {
match_attr = "hdf_manager";
platform :: host {
hostName = "platform_host";
priority = 50;
device_mmc:: device {
device0 :: deviceNode { // 驱动的DeviceNode节点
policy = 2; // policy字段是驱动服务发布的策略,如果需要面向用户态,则为2
priority = 10; // 驱动启动优先级
permission = 0644; // 驱动创建设备节点权限
moduleName = "hi3516_mmc_driver"; // 【必要】用于指定驱动名称,需要与驱动Entry中的moduleName一致。
serviceName = "HDF_PLATFORM_MMC_0"; // 【必要】驱动对外发布服务的名称,必须唯一。
deviceMatchAttr = "hi3516_mmc_emmc"; // 【必要】用于配置控制器私有数据,要与mmc_config.hcs中对应控制器保持一致。emmc类型。
}
device1 :: deviceNode {
policy = 1;
priority = 20;
permission = 0644;
moduleName = "hi3516_mmc_driver";
serviceName = "HDF_PLATFORM_MMC_1";
deviceMatchAttr = "hi3516_mmc_sd"; // SD类型
}
device2 :: deviceNode {
policy = 1;
priority = 30;
permission = 0644;
moduleName = "hi3516_mmc_driver";
serviceName = "HDF_PLATFORM_MMC_2";
deviceMatchAttr = "hi3516_mmc_sdio"; // SDIO类型
}
......
}
}
}
}
```
- mmc_config.hcs配置参考:
在//device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/mmc/mmc_config.hcs文件配置器件属性,其中配置参数如下:
```c
root {
platform {
mmc_config {
template mmc_controller { // 配置模板,如果下面节点使用时继承该模板,则节点中未声明的字段会使用该模板中的默认值。
match_attr = "";
voltDef = 0; // MMC默认电压,0代表3.3V,1代表1.8V,2代表1.2V
freqMin = 50000; // 【必要】最小频率值
freqMax = 100000000; // 【必要】最大频率值
freqDef = 400000; // 【必要】默认频率值
maxBlkNum = 2048; // 【必要】最大的block号
maxBlkSize = 512; // 【必要】最大block大小
ocrDef = 0x300000; // 【必要】工作电压设置相关
caps2 = 0; // 【必要】属性寄存器相关,见mmc_caps.h中MmcCaps2定义。
regSize = 0x118; // 【必要】寄存器位宽
hostId = 0; // 【必要】主机号
regBasePhy = 0x10020000; // 【必要】寄存器物理基地址
irqNum = 63; // 【必要】中断号
devType = 2; // 【必要】模式选择:EMMC、SD、SDIO、COMBO
caps = 0x0001e045; // 【必要】属性寄存器相关,见mmc_caps.h中MmcCaps定义。
}
controller_0x10100000 :: mmc_controller {
match_attr = "hi3516_mmc_emmc"; // 【必要】需要和device_info.hcs中的deviceMatchAttr值一致
hostId = 0;
regBasePhy = 0x10100000;
irqNum = 96;
devType = 0; // eMMC类型
caps = 0xd001e045;
caps2 = 0x60;
}
controller_0x100f0000 :: mmc_controller {
match_attr = "hi3516_mmc_sd";
hostId = 1;
regBasePhy = 0x100f0000;
irqNum = 62;
devType = 1; // SD类型
caps = 0xd001e005;
}
controller_0x10020000 :: mmc_controller {
match_attr = "hi3516_mmc_sdio";
hostId = 2;
regBasePhy = 0x10020000;
irqNum = 63;
devType = 2; // SDIO类型
caps = 0x0001e04d;
}
}
}
}
```
需要注意的是,新增mmc_config.hcs配置文件后,必须在产品对应的hdf.hcs文件中将其包含如下语句所示,否则配置文件无法生效。
```c
#include "../../../../device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/mmc/mmc_config.hcs" // 配置文件相对路径
```
-
实例化MMC控制器对象
完成配置属性文件之后,下一步就是以核心层MmcCntlr对象的初始化为核心,包括驱动适配自定义结构体(传递参数和数据),实例化MmcCntlr成员MmcCntlrOps(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind、Init、Release)。
-
驱动适配者自定义结构体参考
从驱动的角度看,自定义结构体是参数和数据的载体,而且mmc_config.hcs文件中的数值会被HDF读入并通过DeviceResourceIface来初始化结构体成员,一些重要数值也会传递给核心层对象。
struct HimciHost { struct MmcCntlr *mmc; // 【必要】核心层控制对象 struct MmcCmd *cmd; // 【必要】核心层结构体,传递命令,相关命令见枚举量MmcCmdCode void *base; // 地址映射需要,寄存器基地址 enum HimciPowerStatus powerStatus; uint8_t *alignedBuff; uint32_t buffLen; struct scatterlist dmaSg; struct scatterlist *sg; uint32_t dmaSgNum; DMA_ADDR_T dmaPaddr; uint32_t *dmaVaddr; uint32_t irqNum; bool isTuning; uint32_t id; struct OsalMutex mutex; bool waitForEvent; HIMCI_EVENT himciEvent; }; // MmcCntlr是核心层控制器结构体,其中的成员在Bind函数中会被赋值。 struct MmcCntlr { struct IDeviceIoService service; struct HdfDeviceObject *hdfDevObj; struct PlatformDevice device; struct OsalMutex mutex; struct OsalSem released; uint32_t devType; struct MmcDevice *curDev; struct MmcCntlrOps *ops; struct PlatformQueue *msgQueue; uint16_t index; uint16_t voltDef; uint32_t vddBit; uint32_t freqMin; uint32_t freqMax; uint32_t freqDef; union MmcOcr ocrDef; union MmcCaps caps; union MmcCaps2 caps2; uint32_t maxBlkNum; uint32_t maxBlkSize; uint32_t maxReqSize; bool devPlugged; bool detecting; void *priv; };
-
MmcCntlr成员钩子函数结构体MmcCntlrOps的实例化。
static struct MmcCntlrOps g_himciHostOps = { .request = HimciDoRequest, .setClock = HimciSetClock, .setPowerMode = HimciSetPowerMode, .setBusWidth = HimciSetBusWidth, .setBusTiming = HimciSetBusTiming, .setSdioIrq = HimciSetSdioIrq, .hardwareReset = HimciHardwareReset, .systemInit = HimciSystemInit, .setEnhanceStrobe = HimciSetEnhanceStrobe, .switchVoltage = HimciSwitchVoltage, .devReadOnly = HimciDevReadOnly, .devPlugged = HimciCardPlugged, .devBusy = HimciDevBusy, .tune = HimciTune, .rescanSdioDev = HimciRescanSdioDev, };
-
Bind函数开发参考
入参:
HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。
返回值:
HDF_STATUS相关状态(表3为部分展示,如需使用其他状态,可参考//drivers/hdf_core/interfaces/inner_api/utils/hdf_base.h中HDF_STATUS的定义)。
表 3 HDF_STATUS相关状态说明
-
状态(值) | 问题描述 |
---|---|
HDF_ERR_INVALID_OBJECT | 控制器对象非法 |
HDF_ERR_MALLOC_FAIL | 内存分配失败 |
HDF_ERR_INVALID_PARAM | 参数非法 |
HDF_ERR_IO | I/O 错误 |
HDF_SUCCESS | 初始化成功 |
HDF_FAILURE | 初始化失败 |
函数说明:
MmcCntlr、HimciHost、HdfDeviceObject之间互相赋值,方便其他函数可以相互转化,初始化自定义结构体HimciHost对象,初始化MmcCntlr成员,调用核心层MmcCntlrAdd函数,完成MMC控制器的添加。
```c
static int32_t HimciMmcBind(struct HdfDeviceObject *obj)
{
struct MmcCntlr *cntlr = NULL;
struct HimciHost *host = NULL;
int32_t ret;
cntlr = (struct MmcCntlr *)OsalMemCalloc(sizeof(struct MmcCntlr));
host = (struct HimciHost *)OsalMemCalloc(sizeof(struct HimciHost));
host->mmc = cntlr; // 【必要】使HimciHost与MmcCntlr可以相互转化的前提
cntlr->priv = (void *)host; // 【必要】使HimciHost与MmcCntlr可以相互转化的前提
cntlr->ops = &g_himciHostOps; // 【必要】MmcCntlrOps的实例化对象的挂载
cntlr->hdfDevObj = obj; // 【必要】使HdfDeviceObject与MmcCntlr可以相互转化的前提
obj->service = &cntlr->service; // 【必要】使HdfDeviceObject与MmcCntlr可以相互转化的前提
ret = MmcCntlrParse(cntlr, obj); // 【必要】 初始化cntlr,失败就goto _ERR。
......
ret = HimciHostParse(host, obj); // 【必要】 初始化host对象的相关属性,失败就goto _ERR。
......
ret = HimciHostInit(host, cntlr); // 驱动适配者自定义的初始化,失败就goto _ERR。
......
ret = MmcCntlrAdd(cntlr); // 调用核心层函数,失败就goto _ERR。
......
(void)MmcCntlrAddDetectMsgToQueue(cntlr); // 将卡检测消息添加到队列中。
HDF_LOGD("HimciMmcBind: success.");
return HDF_SUCCESS;
ERR:
HimciDeleteHost(host);
HDF_LOGD("HimciMmcBind: fail, err = %d.", ret);
return ret;
}
```
- Init函数开发参考
入参:
HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。
返回值:
HDF_STATUS相关状态。
函数说明:
实现ProcMciInit。
```c
static int32_t HimciMmcInit(struct HdfDeviceObject *obj)
{
static bool procInit = false;
(void)obj;
if (procInit == false) {
if (ProcMciInit() == HDF_SUCCESS) {
procInit = true;
HDF_LOGD("HimciMmcInit: proc init success.");
}
}
HDF_LOGD("HimciMmcInit: success.");
return HDF_SUCCESS;
}
```
- Release函数开发参考
入参:
HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。
返回值:
无。
函数说明:
释放内存和删除控制器等操作,该函数需要在驱动入口结构体中赋值给Release接口,当HDF框架调用Init函数初始化驱动失败时,可以调用Release释放驱动资源。
> ![icon-note.gif](public_sys-resources/icon-note.gif) **说明:**<br>
> 所有强制转换获取相应对象的操作前提是在Init函数中具备对应赋值的操作。
```c
static void HimciMmcRelease(struct HdfDeviceObject *obj)
{
struct MmcCntlr *cntlr = NULL;
......
cntlr = (struct MmcCntlr *)obj->service; // 这里有HdfDeviceObject到MmcCntlr的强制转化,通过service成员,赋值见Bind函数。
......
HimciDeleteHost((struct HimciHost *)cntlr->priv); // 驱动适配者自定义的内存释放函数,这里有MmcCntlr到HimciHost的强制转化。
}
```
-
驱动调试
【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的信息反馈,数据读写成功与否等。